请输入关键字
top
中国光学工程学会最新发布!2023年度15个重大科学问题、工程技术难题和产业技术问题
时间:2023.03.24
       为进一步加强科技前瞻研判,引领原创性科研攻关,打造学术创新高地,推进科技自立自强,按照《中国科协办公厅关于征集2023重大科学问题、工程技术难题和产业技术问题的通知》 (科协办函创字[2023]8号)文件要求,中国光学工程学会面向国内外科技组织和科技工作者,共征集58个全球共同关注的前沿科学问题、工程技术难题和产业技术问题。经过专家委员会函评和终审评议,共评选出15个前沿科学问题、工程技术难题和产业技术问题。

5个前沿科学问题
1、如何突破时-空极限实现超快超分辨成像?
How to break through the spatio-temporal limit to achieve ultrafast and super-resolution imaging?
      2014年诺贝尔奖授予了将光学显微带入纳米尺度的超分辨荧光成像技术,但其依赖于荧光标记,且时间分辨率较低。压缩超快成像技术兼具飞秒时间分辨率和极高数据压缩比,但以牺牲空间分辨率来观测超快动态过程。发展超快超分辨成像技术,在无标记宽场成像下实现时-空分辨率的协同突破,将极大推动人类对各类超快微观现象的认知,助力“追光捕快、察微显纳”的新成像体系建设。

2、人们能以多高的自由度塑造光?
How arbitrarily can light be shaped?
      自从认识光现象起,人们便尝试不断改变光的“造型”。从早期的透镜聚焦光能,到现代显微技术中的复杂结构光、激光雷达形貌测量中的点阵投影等,还有精细激光加工中超长焦深的贝塞尔光束、具有弯曲空间传播轨迹的艾利光束等。对光的塑造能力越高、对其利用程度也越高。为此,应从原理上探索塑造光的极限,即人们能以多高的自由度塑造光?

3、光学系统的体积极限是多小?
What is the volume limit of an optical system?
      光学元件的性能在很大程度上受到可用光学材料和结构设计的限制。基于超表面的平面光学器件以及各类新型微纳元件有望将核心光学元件缩小到几百微米级别,相比传统复杂光学系统体积显著减小了六个数量级。但如何确定具有特定功能的光学系统的体积理论极限还有待研究,从而进一步实现微型化、微型化与集成化,将在AR/VR、遥感探测及未来纳米科技等领域产生巨大影响。

4、光电子芯片的集成度极限是什么?
What is the limit of photonic integration?
      面向未来十年或更长远时间,光电子芯片集成度的增长会遇到瓶颈,相应的容量要扩展到Pb/s量级会遇到许多根本性的限制。本科学问题涉及芯片容量、尺寸、功耗三个方面的理论和技术的极限,需要在超宽带透明光电材料、高集成度器件中的光场调控、高效率低功耗调谐机理等方面研究变革性的新原理和新技术。

5、如何使光计算完备?
How to make optical computing complete?
      采用光学方法来实现运算处理和数据传输是后摩尔时代算力、功耗问题极具潜力的解决途径之一。光子具有光速传播、抗电磁干扰等特性,以及具有天然的多维复用和并行计算优势,十分契合人工智能等应用领域大数据处理的需求。但目前光子计算面临着很多挑战,例如光子芯片的集成度仍有待提高;计算精度仍低于电子芯片,器件架构未优化,上述挑战亟需研究。

5个工程技术难题
1、如何实现EW超强激光?
How to create EW ultra-intense laser?
      依托我国神光装置,攻克甚多束超短脉冲激光高效优质相干合成、超高信噪比管控、等离子体压缩等核心难题,突破EW超强激光高增益、高品质、高负载三大受限条件,国际上率先实现EW级峰值功率激光输出,率先进入超相对论物理等前沿基础研究领域,辐射带动平均功率万瓦级超短激光技术发展和应用。

2、如何构建超大型空间光学装置?
How to construct the ultra-large space optical instrument?
      超大型空间光学装置是当前世界宇航企业重点发展的综合性大系统工程方向。在轨组装和维护则是构建超大型空间光学装置的重要技术途径,即将系统的各个组成模块发射入轨,再利用空间操控工具对各个模块进行在轨组合和装配。该技术的实现将引领弹性可重构光学遥感系统的跨越式发展,并为未来空间飞行器维护与服务奠定技术基础。

3、如何实现高功能密度感存算一体光电集成芯片?
How to realize that photoelectric integrate chip with high functional density sensing and memory integration?
      能够执行探查、识别、飞行、定向打击等任务的微型机器人对功耗、尺寸、功能要求十分苛刻。现有设备集成化程度低,处理数据量大,成像体制单一,无法实现一体化探查。为解决这些问题,可采用感存算一体化仿生架构,突破光电融合集成、智能感知处理等关键技术,挖掘低频有效信息,降低能耗压力,实现高功能密度、极小型化、极低功耗的一体化光电集成芯片。

4、如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?
How to achieve real-time and real-space imaging of microscopic dynamics on the intrinsic scale of atoms and electrons?
      原子、电子是自然界许多现象的核心,其结构及运动状态决定了所构成物质的宏观特性。原子、电子的运动发生在飞秒至阿秒的超快时间尺度以及皮米的超小空间尺度上,因此,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术以实现对原子-亚原子微观世界中超快动力学过程的探测与控制,揭示材料中各种功能的微观起源。

5、如何实现高时空分辨率的全球重力梯度测量?
How to retrieval high time and spatial resolution global gravity gradient?
      地球重力场是地球的基本物理场之一,反映了地球表层及内部物质的空间分布、运动和变化,同时也决定着大地水准面的起伏和变化。利用高精度冷原子重力梯度仪对全球的重力梯度进行高时空分辨率的测量,可以更好地监测揭示海洋环流活动规律,全球陆地水储量变化,冰盖和大型冰川系统的质量平衡,为人类未来的生存和发展制定科学的应对策略。

5个产业技术问题
1、如何打造成熟的硅基光电异质集成工艺平台,支撑新一代信息技术发展的需求?
How to build the accessible platform for optoelectronic heterogeneous integration based on silicon photonics, to facilitate the development of next-generation information technology?
      随着AI、下一代数据中心、激光雷达、卫星通信等战略应用迅速发展,单一集成光子材料已不能满足产业需求。以III-V半导体、薄膜铌酸锂为代表的硅基光电异质集成可融合多种光电功能材料的优势,将成为高端光子芯片在上述应用领域的重要解决途径。

      鉴于光电异质集成国际竞争态势,我国迫切需要提升高端异质集成光子芯片的研发及产业化能力,支撑产业发展。

2、如何突破激光时空特性测试计量短板难题?
How to break through the difficult problem of measuring the spatial and time domain parameters of lasers?
      2022年,激光产业销售收入大于800亿。然而,支撑我国激光产业发展的激光参数测试仪95%依赖进口,年高达3亿元。特别是激光时域和空域参数测试计量缺失,全部依赖德国、美国、加拿大等仪器。典型的包括:测量皮秒、飞秒和阿秒的自相关仪、FROG和SPIDER等;千瓦级功率激光光束质量测试仪等。测试仪器短板,风险大,是急需攻关的问题。

3、中高端传感器如何实现自主可控?
How to achieve self- production and controllability of medium and high-end sensors?
      传感器是物理与数字世界纽带,万物互联基石,对国力有重要影响。目前我国低端传感器产能过剩,中高端传感器自主可控率低。小到手机摄像头、大到汽车发动机,中高端传感器严重限制了我国产品市场竞争力。传感器专业点多面广,对材料、集成电路等基础工业水平要求高。如何实现中高端传感器自主可控是一个关键产业技术难题。

4、如何谱写智能网联汽车的“中国方案”?
How to compose the "Chinese Approach" for intelligent connected vehicles?
      智能化、网联化已成为各国汽车产业博弈未来的战略制高点,李克强院士提出了智能网联汽车的中国方案—“车路云一体化融合系统控制”的技术路线。在路侧通过将激光雷达、毫米波雷达和摄像头融合在一体,具备全天候全息环境感知能力,并有传输延迟低、覆盖范围广、数据精度高、易维护安装的特点,可以解决交通拥堵、交通事故两大核心痛点,进一步提升我国交通信息化、智能化。

5、如何突破反谐振空芯光纤降损及大规模工业化制备难题?
How to break through the loss-reducing and massive industrial manufacture of anti-resonant hollow-core fiber?
      作为近半世纪光通信行业基础媒介的实芯光纤正面临容量与时延两项限制。反谐振空芯光纤在理论损耗、带宽、非线性和介质光速等方面全面优于实芯光纤,将对光纤、光器件、光网络系统形成颠覆性变革,有望构建下一个50年的光通信生态。其理论损耗极限、将损耗降至可商用水平并实现大规模工业制备,是亟待突破的技术和产业问题。
关于开展第八届“中国光学工程学会创新论文奖” 评选工作的通知
“华表工程”——中国光电产品技术成熟度评价第一次评价会圆满成...